Part Number Hot Search : 
ST1S10PH N82503 227M004 2SK25041 227M00 SHJD2250 ERD3237B FZ24NS
Product Description
Full Text Search
 

To Download EBE21UE8ABDA-5C-E Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PRELIMINARY DATA SHEET
2GB DDR2 SDRAM SO-DIMM
EBE21UE8ABDA (256M words x 64 bits, 2 Ranks)
Specifications
* Density: 2GB * Organization 256M words x 64 bits, 2 ranks * Mounting 16 pieces of 1G bits DDR2 SDRAM with sFBGA * Package: 200-pin socket type small outline dual in line memory module (SO-DIMM) PCB height: 30.0mm Lead pitch: 0.6mm Lead-free (RoHS compliant) * Power supply: VDD = 1.8V 0.1V * Data rate: 667Mbps/533Mbps (max.) * Eight internal banks for concurrent operation (components) * Interface: SSTL_18 * Burst lengths (BL): 4, 8 * /CAS Latency (CL): 3, 4, 5 * Precharge: auto precharge option for each burst access * Refresh: auto-refresh, self-refresh * Refresh cycles: 8192 cycles/64ms Average refresh period 7.8s at 0C TC +85C 3.9s at +85C < TC +95C * Operating case temperature range TC = 0C to +95C
Features
* Double-data-rate architecture; two data transfers per clock cycle * The high-speed data transfer is realized by the 4 bits prefetch pipelined architecture * Bi-directional differential data strobe (DQS and /DQS) is transmitted/received with data for capturing data at the receiver * DQS is edge-aligned with data for READs; centeraligned with data for WRITEs * Differential clock inputs (CK and /CK) * DLL aligns DQ and DQS transitions with CK transitions * Commands entered on each positive CK edge; data and data mask referenced to both edges of DQS * Data mask (DM) for write data * Posted /CAS by programmable additive latency for better command and data bus efficiency * Off-Chip-Driver Impedance Adjustment and On-DieTermination for better signal quality * /DQS can be disabled for single-ended Data Strobe operation
Document No. E0938E10 (Ver. 1.0) Date Published August 2006 (K) Japan Printed in Japan URL: http://www.elpida.com Elpida Memory, Inc. 2006
EBE21UE8ABDA
Ordering Information
Data rate Mbps (max.) 667 533 Component JEDEC speed bin (CL-tRCD-tRP) DDR2-667 (5-5-5) DDR2-533 (4-4-4) Contact pad Gold
Part number EBE21UE8ABDA-6E-E EBE21UE8ABDA-5C-E
Package 200-pin SO-DIMM (lead-free)
Mounted devices 1G bits DDR2 SDRAM*
1
Note: 1. Please refer to 1Gb DDR2 datasheet (E0852E) for electrical characteristics.
Pin Configurations
Front side 1 pin 39 pin 41 pin 199 pin
2 pin
40 pin 42 pin Back side
200 pin
Front side Pin No. 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 101 Pin name VREF VSS DQ0 DQ1 VSS /DQS0 DQS0 VSS DQ2 DQ3 VSS DQ8 DQ9 VSS /DQS1 DQS1 VSS DQ10 DQ11 VSS VSS DQ16 DQ17 VSS /DQS2 A1 Pin No. 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 151 Pin name DQS2 VSS DQ18 DQ19 VSS DQ24 DQ25 VSS DM3 NC VSS DQ26 DQ27 VSS CKE0 VDD NC BA2 VDD A12 A9 A8 VDD A5 A3 DQ42
Back side Pin No. 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 102 Pin name VSS DQ4 DQ5 VSS DM0 VSS DQ6 DQ7 VSS DQ12 DQ13 VSS DM1 VSS CK0 /CK0 VSS DQ14 DQ15 VSS VSS DQ20 DQ21 VSS NC A0 Pin No. 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 152 Pin name DM2 VSS DQ22 DQ23 VSS DQ28 DQ29 VSS /DQS3 DQS3 VSS DQ30 DQ31 VSS CKE1 VDD NC NC VDD A11 A7 A6 VDD A4 A2 DQ46
Preliminary Data Sheet E0938E10 (Ver. 1.0)
2
EBE21UE8ABDA
Front side Pin No. 103 105 107 109 111 113 115 117 119 121 123 125 127 129 131 133 135 137 139 141 143 145 147 149 Pin name VDD A10/AP BA0 /WE VDD /CAS /CS1 VDD ODT1 VSS DQ32 DQ33 VSS /DQS4 DQS4 VSS DQ34 DQ35 VSS DQ40 DQ41 VSS DM5 VSS Pin No. 153 155 157 159 161 163 165 167 169 171 173 175 177 179 181 183 185 187 189 191 193 195 197 199 Pin name DQ43 VSS DQ48 DQ49 VSS NC VSS /DQS6 DQS6 VSS DQ50 DQ51 VSS DQ56 DQ57 VSS DM7 VSS DQ58 DQ59 VSS SDA SCL VDDSPD Back side Pin No. 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 Pin name VDD BA1 /RAS /CS0 VDD ODT0 A13 VDD NC VSS DQ36 DQ37 VSS DM4 VSS DQ38 DQ39 VSS DQ44 DQ45 VSS /DQS5 DQS5 VSS Pin No. 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 Pin name DQ47 VSS DQ52 DQ53 VSS CK1 /CK1 VSS DM6 VSS DQ54 DQ55 VSS DQ60 DQ61 VSS /DQS7 DQS7 VSS DQ62 DQ63 VSS SA0 SA1
Preliminary Data Sheet E0938E10 (Ver. 1.0)
3
EBE21UE8ABDA
Pin Description
Pin name A0 to A13 A10 (AP) BA0, BA1, BA2 DQ0 to DQ63 /RAS /CAS /WE /CS0, /CS1 CKE0, CKE1 CK0, CK1 /CK0, /CK1 DQS0 to DQS7, /DQS0 to /DQS7 DM0 to DM7 SCL SDA SA0, SA1 VDD VDDSPD VREF VSS ODT0, ODT1 NC Function Address input Row address Column address Auto precharge Bank select address Data input/output Row address strobe command Column address strobe command Write enable Chip select Clock enable Clock input Differential clock input Input and output data strobe Input mask Clock input for serial PD Data input/output for serial PD Serial address input Power for internal circuit Power for serial EEPROM Input reference voltage Ground ODT control No connection A0 to A13 A0 to A9
Preliminary Data Sheet E0938E10 (Ver. 1.0)
4
EBE21UE8ABDA
Serial PD Matrix
Byte No. 0 1 2 3 4 5 6 7 8 9 Function described Number of bytes utilized by module manufacturer Total number of bytes in serial PD device Memory type Number of row address Number of column address Number of DIMM ranks Module data width Module data width continuation Voltage interface level of this assembly DDR SDRAM cycle time, CL = 5 -6E -5C 10 SDRAM access from clock (tAC) -6E -5C 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 DIMM configuration type Refresh rate/type Primary SDRAM width Error checking SDRAM width Reserved Bit7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 Bit6 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 Bit5 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 1 1 0 Bit4 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 0 0 Bit3 0 1 1 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 0 1 1 1 1 0 Bit2 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 Bit1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 Bit0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 1 Hex value Comments 80H 08H 08H 0EH 0AH 71H 40H 00H 05H 30H 3DH 45H 50H 00H 82H 08H 00H 00H 0CH 08H 38H 01H 04H 00H 03H 3DH 50H 50H 60H 3CH 1EH 3CH 2DH 01H 128 bytes 256 bytes DDR2 SDRAM 14 10 Stack/2ranks 64 0 SSTL 1.8V 3.0ns*
1
3.75ns* 0.45ns* 0.5ns* None 7.8s x8 None 0 4,8 8 3, 4, 5
1
1
1
SDRAM device attributes: 0 Burst length supported SDRAM device attributes: Number of 0 banks on SDRAM device SDRAM device attributes: 0 /CAS latency DIMM Mechanical Characteristics DIMM type information SDRAM module attributes SDRAM device attributes: General Minimum clock cycle time at CL = 4 Maximum data access time (tAC) from clock at CL = 4 Minimum clock cycle time at CL = 3 Maximum data access time (tAC) from clock at CL = 3 Minimum row precharge time (tRP) Minimum row active to row active delay (tRRD) Minimum active to precharge time (tRAS) Module rank density 0 0 0 0 0 0 0 0 0 0
3.8mm max. SO-DIMM Normal Weak Driver 50 ODT Support 3.75ns* 0.5ns* 5.0ns* 0.6ns* 15ns 7.5ns 15ns 45ns 1G bytes
1 1
1
1
Minimum /RAS to /CAS delay (tRCD) 0 0 0
Preliminary Data Sheet E0938E10 (Ver. 1.0)
5
EBE21UE8ABDA
Byte No. 32
Function described Address and command setup time before clock (tIS) -6E -5C Address and command hold time after clock (tIH) -6E -5C
Bit7 0 0 0 0
Bit6 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 x 1 1 1 0 0 1 1 0
Bit5 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 x 0 0 0 1 1 0 0 1
Bit4 0 0 0 1 1 1 0 1 1 1 0 0 1 1 0 1 1 0 0 0 0 1 0 0 1 1 0 x 0 0 0 1 1 1 0 1
Bit3 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 1 1 0 x 0 0 0 0 0 0 0 1
Bit2 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 0 1 0 0 0 0 0 1 0 1 1 0 x 1 0 1 0 0 1 1 0
Bit1 0 0 1 1 0 1 1 0 1 1 0 1 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 x 0 1 0 1 0 0 0 0
Bit0 0 1 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 x 1 0 1 0 1 1 1 0
Hex value Comments 20H 25H 27H 37H 10H 17H 22H 3CH 1EH 1EH 00H 06H 3CH 7FH 80H 18H 1EH 22H 28H 00H 00H 12H 25H 69H 7FH FEH 00H xx 45H 42H 45H 32H 31H 55H 45H 38H (ASCII-8bit code) E B E 2 1 U E 8 Continuation code Elpida Memory Rev. 1.2 60ns*
1
0.20ns* 0.25ns* 0.27ns* 0.37ns* 0.10ns* 0.17ns* 0.22ns* 15ns*
1
1
1
33
1
1
34 35
Data input setup time before clock 0 (tDS) Data input hold time after clock (tDH) 0 -6E -5C 0 0
1
1
1
36 37 38 39 40 41 42 43 44
Write recovery time (tWR)
Internal write to read command delay 0 (tWTR) Internal read to precharge command 0 delay (tRTP) Memory analysis probe 0 characteristics Extension of Byte 41 and 42 Active command period (tRC) Auto refresh to active/ Auto refresh command cycle (tRFC) SDRAM tCK cycle max. (tCK max.) Dout to DQS skew -6E -5C Data hold skew (tQHS) -6E -5C 0 0 0 1 0 0 0 0 0 0 SPD Revision Checksum for bytes 0 to 62 -6E -5C 0 0 0 0 1 0 x 0 0 0 0 0 0 0 0
7.5ns* 7.5ns* TBD
1
1
127.5ns* 8ns*
1
1
0.24ns* 0.30ns* 0.34ns* 0.40ns*
1
1
45
1
1
46 47 to 61 62 63
PLL relock time
Undefined
64 to 65 66 67 to 71 72 73 74 75 76 77 78 79 80
Manufacturer's JEDEC ID code Manufacturer's JEDEC ID code Manufacturer's JEDEC ID code Manufacturing location Module part number Module part number Module part number Module part number Module part number Module part number Module part number Module part number
Preliminary Data Sheet E0938E10 (Ver. 1.0)
6
EBE21UE8ABDA
Byte No. 81 82 83 84 85 86 Function described Module part number Module part number Module part number Module part number Module part number Module part number -6E -5C 87 Module part number -6E -5C 88 89 90 91 92 93 94 95 to 98 99 to 127 Module part number Module part number Module part number Revision code Revision code Manufacturing date Manufacturing date Module serial number Manufacture specific data Bit7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x x Bit6 1 1 1 1 0 0 0 1 1 0 1 0 0 0 x x Bit5 0 0 0 0 1 1 1 0 0 1 0 1 1 1 x x Bit4 0 0 0 0 0 1 1 0 0 0 0 0 1 0 x x Bit3 0 0 0 0 1 0 0 0 0 1 0 0 0 0 x x Bit2 0 0 1 0 1 1 1 1 0 1 1 0 0 0 x x Bit1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 x x Bit0 1 0 0 1 1 0 1 1 1 1 1 0 0 0 x x Hex value Comments 41H 42H 44H 41H 2DH 36H 35H 45H 43H 2DH 45H 20H 30H 20H xx xx A B D A -- 6 5 E C -- E (Space) Initial (Space) Year code (BCD) Week code (BCD)
Note: 1. These specifications are defined based on component specification, not module.
Preliminary Data Sheet E0938E10 (Ver. 1.0)
7
EBE21UE8ABDA
Block Diagram
CKE1 ODT1 RS2 RS2 RS2 RS2 RS2 RS2 RS1 RS1 RS1 8 DQ0 to DQ7 RS1 /DQS4 DQS4 DM4 RS1 RS1 RS1 8 DQ32 to DQ39 RS1
/CS1 CKE0 ODT0 /CS0 /DQS0 DQS0 DM0
/DQS /CS ODT CKE DQS DM DQ0 to DQ7
/DQS /CS ODT CKE DQS DM
/DQS /CS ODT CKE DQS DM DQ0 to DQ7
/DQS /CS ODT CKE DQS
D0
DQ0 to DQ7
D8
D4
DM DQ0 to DQ7
D12
/DQS1 DQS1 DM1 DQ8 to DQ15
RS1 RS1 RS1 8 RS1
/DQS /CS ODT CKE DQS DM DQ0 to DQ7
/DQS /CS ODT CKE DQS
/DQS5 DQS5
RS1 RS1 RS1 8 RS1
/DQS /CS ODT CKE DQS DM DQ0 to DQ7
/DQS /CS ODT CKE DQS
D1
DM DQ0 to DQ7
D9
DM5 DQ40 to DQ47
D5
DM DQ0 to DQ7
D13
/DQS2 DQS2 DM2 DQ16 to DQ23
RS1 RS1 RS1 8 RS1
/DQS /CS ODT CKE DQS DM DQ0 to DQ7
/DQS /CS ODT CKE DQS
/DQS6 DQS6
RS1 RS1 RS1 8 RS1
/DQS /CS ODT CKE DQS DM
/DQS /CS ODT CKE DQS DM
D2
DM DQ0 to DQ7
D10
DM6 DQ48 to DQ55
D6
DQ0 to DQ7 DQ0 to DQ7
D14
/DQS3 DQS3 DM3 DQ24 to DQ31
RS1 RS1 RS1 8 RS1
/DQS /CS ODT CKE DQS DM DQ0 to DQ7
/DQS /CS ODT CKE DQS
/DQS7 DQS7 DM7
RS1 RS1 RS1 8 RS1
/DQS /CS ODT CKE DQS DM DQ0 to DQ7
/DQS /CS ODT CKE DQS DM
D3
DM DQ0 to DQ7
D11
DQ56 to DQ63
D7
DQ0 to DQ7
D15
BA0 to BA2 A0 to A13 /RAS /CAS /WE CK0 /CK0 CK1 /CK1 VDDSPD VREF VDD VSS
RS3
BA0 to BA2: SDRAMs (D0 to D15)
RS3
Serial PD SCL SA0 SA1 SCL A0 A1 A2 SDA SDA
A0 to A13: SDRAMs (D0 to D15)
RS3 RS3 RS3
/RAS: SDRAMs (D0 to D15) /CAS: SDRAMs (D0 to D15) /WE: SDRAMs (D0 to D15) 8 loads
U0
WP
Notes : 8 loads 1. DQ wiring may be changed within a byte. 2. DQ, DQS, /DQS, ODT, DM, CKE, /CS relationships must be meintained as shown. SPD SDRAMs (D0 to D15) SDRAMs (D0 to D15, VDD and VDDQ) SDRAMs (D0 to D15, SPD)
* D0 to D15 : 1G bits DDR2 SDRAM U0 : 2k bits EEPROM Rs1 : 22 Rs2 : 3.0 Rs3 : 10.0
Preliminary Data Sheet E0938E10 (Ver. 1.0)
8
EBE21UE8ABDA
Electrical Specifications
* All voltages are referenced to VSS (GND). Absolute Maximum Ratings
Parameter Voltage on any pin relative to VSS Supply voltage relative to VSS Short circuit output current Power dissipation Operating case temperature Storage temperature Symbol VT VDD IOS PD TC Tstg Value -0.5 to +2.3 -0.5 to +2.3 50 8 0 to +95 -55 to +100 Unit V V mA W C C 1, 2 1 1 Notes 1
Notes: 1. DDR2 SDRAM component specification. 2. Supporting 0C to +85C and being able to extend to +95C with doubling auto-refresh commands in frequency to a 32ms period (tREFI = 3.9s) and higher temperature self-refresh entry via the control of EMRS (2) bit A7 is required. Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.
DC Operating Conditions (TC = 0C to +85C) (DDR2 SDRAM Component Specification)
Parameter Supply voltage Symbol VDD, VDDQ VSS VDDSPD Input reference voltage Termination voltage DC input logic high DC input low AC input logic high -6E -5C AC input logic low -6E -5C VREF VTT VIH (DC) VIL (DC) VIH (AC) VIH (AC) VIL (AC) VIL (AC) min. 1.7 0 1.7 0.49 x VDDQ VREF - 0.04 VREF + 0.125 -0.3 VREF + 0.200 VREF + 0.250 typ. 1.8 0 -- max. 1.9 0 3.6 Unit V V V V V V V V V V V 1, 2 3 Notes 4
0.50 x VDDQ 0.51 x VDDQ VREF VREF + 0.04 VDDQ + 0.3 VREF - 0.125 VREF - 0.200 VREF - 0.250
Notes: 1. The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically the value of VREF is expected to be about 0.5 x VDDQ of the transmitting device and VREF are expected to track variations in VDDQ. 2. Peak to peak AC noise on VREF may not exceed 2% VREF (DC). 3. VTT of transmitting device must track VREF of receiving device. 4. VDDQ must be equal to VDD.
Preliminary Data Sheet E0938E10 (Ver. 1.0)
9
EBE21UE8ABDA
DC Characteristics 1 (TC = 0C to +85C, VDD = 1.8V 0.1V, VSS = 0V)
Parameter Symbol Grade -6E -5C -6E -5C -6E -5C -6E -5C max. 880 840 1440 1280 1000 960 1560 1400 Unit mA Test condition one bank; tCK = tCK (IDD), tRC = tRC (IDD), tRAS = tRAS min.(IDD); CKE is H, /CS is H between valid commands; Address bus inputs are SWITCHING; Data bus inputs are SWITCHING one bank; IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0; tCK = tCK (IDD), tRC = tRC (IDD), tRAS = tRAS min.(IDD); tRCD = tRCD (IDD); CKE is H, /CS is H between valid commands; Address bus inputs are SWITCHING; Data pattern is same as IDD4W all banks idle; tCK = tCK (IDD); CKE is L; Other control and address bus inputs are STABLE; Data bus inputs are FLOATING all banks idle; tCK = tCK (IDD); CKE is H, /CS is H; Other control and address bus inputs are STABLE; Data bus inputs are FLOATING all banks idle; tCK = tCK (IDD); CKE is H, /CS is H; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING all banks open; tCK = tCK (IDD); CKE is L; Other control and address bus inputs are STABLE; Data bus inputs are FLOATING Fast PDN Exit MRS(12) = 0 Slow PDN Exit MRS(12) = 1
Operating current IDD0 (ACT-PRE) (Another rank is in IDD2P) Operating current IDD0 (ACT-PRE) (Another rank is in IDD3N) Operating current IDD1 (ACT-READ-PRE) (Another rank is in IDD2P) Operating current IDD1 (ACT-READ-PRE) (Another rank is in IDD3N)
mA
mA
mA
Precharge power-down standby current
IDD2P
160
mA
Precharge quiet standby current
IDD2Q
-6E -5C
560 480
mA
Idle standby current
IDD2N
-6E -5C
640 560
mA
IDD3P-F Active power-down standby current IDD3P-S
-6E -5C
560 480
mA
320
mA
Active standby current
IDD3N
-6E -5C
1280 1040
mA
all banks open; tCK = tCK (IDD), tRAS = tRAS max.(IDD), tRP = tRP (IDD); CKE is H, /CS is H between valid commands; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING all banks open, continuous burst reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0; tCK = tCK (IDD), tRAS = tRAS max.(IDD), tRP = tRP (IDD); CKE is H, /CS is H between valid commands; Address bus inputs are SWITCHING; Data pattern is same as IDD4W all banks open, continuous burst writes; BL = 4, CL = CL(IDD), AL = 0; tCK = tCK (IDD), tRAS = tRAS max.(IDD), tRP = tRP (IDD); CKE is H, /CS is H between valid commands; Address bus inputs are SWITCHING; Data bus inputs are SWITCHING
Operating current IDD4R (Burst read operating) (Another rank is in IDD2P) Operating current IDD4R (Burst read operating) (Another rank is in IDD3N) Operating current IDD4W (Burst write operating) (Another rank is in IDD2P) Operating current IDD4W (Burst write operating) (Another rank is in IDD3N)
-6E -5C -6E -5C -6E -5C -6E -5C
1640 1400 2200 1840 1640 1400 2200 1840
mA
mA
mA
mA
Preliminary Data Sheet E0938E10 (Ver. 1.0)
10
EBE21UE8ABDA
Parameter
Symbol
Grade -6E -5C
max. 2760 2640
Unit mA
Test condition tCK = tCK (IDD); Refresh command at every tRFC (IDD) interval; CKE is H, /CS is H between valid commands; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING Self Refresh Mode; CK and /CK at 0V; CKE 0.2V; Other control and address bus inputs are FLOATING; Data bus inputs are FLOATING all bank interleaving reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL = tRCD (IDD) -1 x tCK (IDD); tCK = tCK (IDD), tRC = tRC (IDD), tRRD = tRRD(IDD), tFAW = tFAW (IDD), tRCD = 1 x tCK (IDD); CKE is H, CS is H between valid commands; Address bus inputs are STABLE during DESELECTs; Data pattern is same as IDD4W;
Auto-refresh current IDD5 (Another rank is in IDD2P)
Auto-refresh current IDD5 (Another rank is in IDD3N)
-6E -5C
3320 3080
mA
Self-refresh current
IDD6
192
mA
Operating current IDD7 (Bank interleaving) (Another rank is in IDD2P) Operating current IDD7 (Bank interleaving) (Another rank is in IDD3N)
-6E -5C -6E -5C
2600 2560 3160 3000
mA
mA
Notes: 1. 2. 3. 4.
IDD specifications are tested after the device is properly initialized. Input slew rate is specified by AC Input Test Condition. IDD parameters are specified with ODT disabled. Data bus consists of DQ, DM, DQS, /DQS, RDQS, /RDQS, LDQS, /LDQS, UDQS, and /UDQS. IDD values must be met with all combinations of EMRS bits 10 and 11. 5. Definitions for IDD L is defined as VIN VIL (AC) (max.) H is defined as VIN VIH (AC) (min.) STABLE is defined as inputs stable at an H or L level FLOATING is defined as inputs at VREF = VDDQ/2 SWITCHING is defined as: inputs changing between H and L every other clock cycle (once per two clocks) for address and control signals, and inputs changing between H and L every other data transfer (once per clock) for DQ signals not including masks or strobes. 6. Refer to AC Timing for IDD Test Conditions.
AC Timing for IDD Test Conditions For purposes of IDD testing, the following parameters are to be utilized.
DDR2-667 Parameter CL (IDD) tRCD (IDD) tRC (IDD) tRRD (IDD) tFAW (IDD) tCK (IDD) tRAS (min.)(IDD) tRAS (max.)(IDD) tRP (IDD) tRFC (IDD) 5-5-5 5 15 60 7.5 37.5 3 45 70000 15 127.5 DDR2-533 4-4-4 4 15 60 7.5 37.5 3.75 45 70000 15 127.5 Unit tCK ns ns ns ns ns ns ns ns ns
Preliminary Data Sheet E0938E10 (Ver. 1.0)
11
EBE21UE8ABDA
DC Characteristics 2 (TC = 0C to +85C, VDD, VDDQ = 1.8V 0.1V) (DDR2 SDRAM Component Specification)
Parameter Input leakage current Output leakage current Symbol ILI ILO Value 2 5 VTT + 0.603 VTT - 0.603 0.5 x VDDQ +13.4 -13.4 Unit A A V V V mA mA Notes VDD VIN VSS VDDQ VOUT VSS 5 5 1 3, 4, 5 2, 4, 5
Minimum required output pull-up under AC VOH test load Maximum required output pull-down under VOL AC test load Output timing measurement reference level VOTR Output minimum sink DC current Output minimum source DC current IOL IOH
Notes: 1. 2. 3. 4. 5.
The VDDQ of the device under test is referenced. VDDQ = 1.7V; VOUT = 1.42V. VDDQ = 1.7V; VOUT = 0.28V. The DC value of VREF applied to the receiving device is expected to be set to VTT. After OCD calibration to 18 at TC = 25C, VDD = VDDQ = 1.8V.
DC Characteristics 3 (TC = 0C to +85C, VDD, VDDQ = 1.8V 0.1V) (DDR2 SDRAM Component Specification)
Parameter AC differential input voltage AC differential cross point voltage AC differential cross point voltage Symbol VID (AC) VIX (AC) VOX (AC) min. 0.5 0.5 x VDDQ - 0.175 0.5 x VDDQ - 0.125 max. VDDQ + 0.6 0.5 x VDDQ + 0.175 0.5 x VDDQ + 0.125 Unit V V V Notes 1, 2 2 3
Notes: 1. VID(AC) specifies the input differential voltage |VTR -VCP| required for switching, where VTR is the true input signal (such as CK, DQS, LDQS or UDQS) and VCP is the complementary input signal (such as /CK, /DQS, /LDQS or /UDQS). The minimum value is equal to VIH(AC) - VIL(AC). 2. The typical value of VIX(AC) is expected to be about 0.5 x VDDQ of the transmitting device and VIX(AC) is expected to track variations in VDDQ . VIX(AC) indicates the voltage at which differential input signals must cross. 3. The typical value of VOX(AC) is expected to be about 0.5 x VDDQ of the transmitting device and VOX(AC) is expected to track variations in VDDQ . VOX(AC) indicates the voltage at which differential output signals must cross.
VDDQ VTR
VID
VCP VSSQ
Crossing point
VIX or VOX
Differential Signal Levels*1, 2
Preliminary Data Sheet E0938E10 (Ver. 1.0)
12
EBE21UE8ABDA
ODT DC Electrical Characteristics (TC = 0C to +85C, VDD, VDDQ = 1.8V 0.1V) (DDR2 SDRAM Component Specification)
Parameter Rtt effective impedance value for EMRS (A6, A2) = 0, 1; 75 Rtt effective impedance value for EMRS (A6, A2) = 1, 0; 150 Rtt effective impedance value for EMRS (A6, A2) = 1, 1; 50 Deviation of VM with respect to VDDQ/2 Symbol Rtt1(eff) Rtt2(eff) Rtt3(eff) VM min 60 120 40 -6 typ 75 150 50 max 90 180 60 +6 Unit % Note 1 1 1 1
Note: 1. Test condition for Rtt measurements. Measurement Definition for Rtt(eff) Apply VIH (AC) and VIL (AC) to test pin separately, then measure current I(VIH(AC)) and I(VIL(AC)) respectively. VIH(AC), and VDDQ values defined in SSTL_18.
Rtt(eff) =
VIH(AC) - VIL(AC) I(VIH(AC)) - I(VIL(AC))
Measurement Definition for VM Measure voltage (VM) at test pin (midpoint) with no load.
VM =
2 x VM VDDQ
- 1 x 100%
OCD Default Characteristics (TC = 0C to +85C, VDD, VDDQ = 1.8V 0.1V) (DDR2 SDRAM Component Specification)
Parameter Output impedance Pull-up and pull-down mismatch Output slew rate min 12.6 0 1.5 typ 18 max 23.4 4 5 Unit V/ns Notes 1 1, 2 3, 4
Notes: 1. Impedance measurement condition for output source DC current: VDDQ = 1.7V; VOUT = 1420mV; (VOUT-VDDQ)/IOH must be less than 23.4 for values of VOUT between VDDQ and VDDQ-280mV. Impedance measurement condition for output sink DC current: VDDQ = 1.7V; VOUT = 280mV; VOUT/IOL must be less than 23.4 for values of VOUT between 0V and 280mV. 2. Mismatch is absolute value between pull up and pull down, both are measured at same temperature and voltage. 3. Slew rate measured from VIL(AC) to VIH(AC). 4. The absolute value of the slew rate as measured from DC to DC is equal to or greater than the slew rate as measured from AC to AC. This is guaranteed by design and characterization.
Pin Capacitance (TA = 25C, VDD = 1.8V 0.1V)
Parameter Input capacitance Input capacitance Data and DQS input/output capacitance Symbol CI1 CI2 CO Pins Address, /RAS, /CAS, /WE, /CS, CKE, ODT CK, /CK DQ, DQS, /DQS, DM max. TBD TBD TBD Unit pF pF pF Note
Preliminary Data Sheet E0938E10 (Ver. 1.0)
13
EBE21UE8ABDA
AC Characteristics (TC = 0C to +85C, VDD, VDDQ = 1.8V 0.1V, VSS = 0V) [DDR2-667] (DDR2 SDRAM Component Specification)
-6E Frequency (Mbps) Parameter /CAS latency Active to read or write command delay Precharge command period Active to active/auto refresh command time DQ output access time from CK, /CK DQS output access time from CK, /CK CK high-level width CK low-level width CK half period Clock cycle time DQ and DM input hold time DQ and DM input setup time Control and Address input pulse width for each input Symbol CL tRCD tRP tRC tAC tDQSCK tCH tCL tHP tCK tDH (base) tDS (base) tIPW 667 min. 5 15 15 60 -450 -400 0.45 0.45 min. (tCL, tCH) 3000 175 100 0.6 0.35 tAC min. tHP - tQHS -0.25 0.35 0.35 0.2 0.2 2 0.4 0.35 275 200 0.9 0.4 45 tRCD min. 7.5 37.5 15 (tWR/tCK)+(tRP/tCK) max. 5 +450 +400 0.55 0.55 8000 tAC max. tAC max. 240 340 +0.25 0.6 1.1 0.6 70000 Unit tCK ns ns ns ps ps tCK tCK ps ps ps ps tCK tCK ps ps ps ps ps tCK tCK tCK tCK tCK tCK tCK tCK ps ps tCK tCK ns ns ns ns ns tCK 1 5 4 5 4 Notes
DQ and DM input pulse width for each input tDIPW Data-out high-impedance time from CK,/CK tHZ Data-out low-impedance time from CK,/CK DQS-DQ skew for DQS and associated DQ signals DQ hold skew factor DQ/DQS output hold time from DQS tLZ tDQSQ tQHS tQH
DQS latching rising transitions to associated tDQSS clock edges DQS input high pulse width DQS input low pulse width DQS falling edge to CK setup time DQS falling edge hold time from CK Mode register set command cycle time Write postamble Write preamble Address and control input hold time Address and control input setup time Read preamble Read postamble Active to precharge command Active to auto-precharge delay Active bank A to active bank B command period Four active window period Write recovery time Auto precharge write recovery + precharge time tDQSH tDQSL tDSS tDSH tMRD tWPST tWPRE tIH (base) tIS (base) tRPRE tRPST tRAS tRAP tRRD tFAW tWR tDAL
Preliminary Data Sheet E0938E10 (Ver. 1.0)
14
EBE21UE8ABDA
-6E Frequency (Mbps) Parameter Internal write to read command delay Internal read to precharge command delay Exit self refresh to a non-read command Exit self refresh to a read command Symbol tWTR tRTP tXSNR tXSRD 667 min. 7.5 7.5 tRFC + 10 200 2 2 7 - AL 3 0 0 127.5 tIS + tCK + tIH max. 12 12 7.8 3.9 Unit ns ns ns tCK tCK tCK tCK tCK ns ns ns s s ns 3 2, 3 Notes
Exit precharge power down to any non-read tXP command Exit active power down to read command Exit active power down to read command (slow exit/low power mode) CKE minimum pulse width (high and low pulse width) Output impedance test driver delay MRS command to ODT update delay tXARD tXARDS tCKE tOIT
tMOD
Auto refresh to active/auto refresh command tRFC time Average periodic refresh interval tREFI (0C TC +85C) (+85C < TC +95C) tREFI Minimum time clocks remains ON after CKE tDELAY asynchronously drops low
Preliminary Data Sheet E0938E10 (Ver. 1.0)
15
EBE21UE8ABDA
AC Characteristics (TC = 0C to +85C, VDD, VDDQ = 1.8V 0.1V, VSS = 0V) [DDR2-553] (DDR2 SDRAM Component Specification)
-5C Frequency (Mbps) Parameter /CAS latency Active to read or write command delay Precharge command period Active to active/auto refresh command time DQ output access time from CK, /CK DQS output access time from CK, /CK CK high-level width CK low-level width CK half period Clock cycle time DQ and DM input hold time (differential strobe) DQ and DM input hold time (single-ended strobe) DQ and DM input setup time (differential strobe) DQ and DM input setup time (single-ended strobe) Control and Address input pulse width for each input DQ and DM input pulse width for each input Data-out high-impedance time from CK,/CK Data-out low-impedance time from CK,/CK DQS-DQ skew for DQS and associated DQ signals DQ hold skew factor DQ/DQS output hold time from DQS Symbol CL tRCD tRP tRC tAC tDQSCK tCH tCL tHP tCK tDH (base) 533 min. 4 15 15 60 -500 -450 0.45 0.45 min. (tCL, tCH) 3750 225 max. 5 +500 +450 0.55 0.55 8000 tAC max. tAC max. 300 400 +0.25 0.6 1.1 0.6 70000 Unit tCK ns ns ns ps ps tCK tCK ps ps ps ps ps ps tCK tCK ps ps ps ps ps tCK tCK tCK tCK tCK tCK tCK tCK ps ps tCK tCK ns ns 5 4 4 5 Notes
tDH1 (base) -25 tDS (base) 100
tDS1 (base) -25 tIPW tDIPW tHZ tLZ tDQSQ tQHS tQH 0.6 0.35 tAC min. tHP - tQHS -0.25 0.35 0.35 0.2 0.2 2 0.4 0.35 375 250 0.9 0.4 45 tRCD min.
DQS latching rising transitions to associated tDQSS clock edges DQS input high pulse width DQS input low pulse width DQS falling edge to CK setup time DQS falling edge hold time from CK Mode register set command cycle time Write postamble Write preamble Address and control input hold time Address and control input setup time Read preamble Read postamble Active to precharge command Active to auto-precharge delay tDQSH tDQSL tDSS tDSH tMRD tWPST tWPRE tIH (base) tIS (base) tRPRE tRPST tRAS tRAP
Preliminary Data Sheet E0938E10 (Ver. 1.0)
16
EBE21UE8ABDA
-5C Frequency (Mbps) Parameter Active bank A to active bank B command period Four active window period) Write recovery time Auto precharge write recovery + precharge time Internal write to read command delay Internal read to precharge command delay Exit self refresh to a non-read command Exit self refresh to a read command Exit precharge power down to any non-read command Exit active power down to read command Exit active power down to read command (slow exit/low power mode) CKE minimum pulse width (high and low pulse width) Output impedance test driver delay MRS command to ODT update delay Symbol tRRD tFAW tWR tDAL tWTR tRTP tXSNR tXSRD tXP tXARD tXARDS tCKE tOIT
tMOD
533 min. 7.5 37.5 15 (tWR/tCK)+(tRP/tCK) 7.5 7.5 tRFC + 10 200 2 2 6 - AL 3 0 0 127.5 tIS + tCK + tIH max. 12 12 7.8 3.9 Unit ns ns ns tCK ns ns ns tCK tCK tCK tCK tCK ns ns ns s s ns 3 2, 3 1 Notes
Auto refresh to active/auto refresh command tRFC time Average periodic refresh interval tREFI (0C TC +85C) (+85C < TC +95C) Minimum time clocks remains ON after CKE asynchronously drops low tREFI tDELAY
Notes: 1. 2. 3. 4.
For each of the terms above, if not already an integer, round to the next higher integer. AL: Additive Latency. MRS A12 bit defines which active power down exit timing to be applied. The figures of Input Waveform Timing 1 and 2 are referenced from the input signal crossing at the VIH(AC) level for a rising signal and VIL(AC) for a falling signal applied to the device under test. 5. The figures of Input Waveform Timing 1 and 2 are referenced from the input signal crossing at the VIH(DC) level for a rising signal and VIL(DC) for a falling signal applied to the device under test.
DQS /DQS
CK /CK
tDS
tDH
tDS
tDH VDDQ VIH (AC)(min.) VIH (DC)(min.) VREF VIL (DC)(max.) VIL (AC)(max.) VSS
tIS
tIH
tIS
tIH VDDQ VIH (AC)(min.) VIH (DC)(min.) VREF VIL (DC)(max.) VIL (AC)(max.) VSS
Input Waveform Timing 1 (tDS, tDH)
Input Waveform Timing 2 (tIS, tIH)
Preliminary Data Sheet E0938E10 (Ver. 1.0)
17
EBE21UE8ABDA
ODT AC Electrical Characteristics (DDR2 SDRAM Component Specification)
Parameter ODT turn-on delay ODT turn-on -6E -5C ODT turn-on (power down mode) ODT turn-off delay ODT turn-off ODT turn-off (power down mode) ODT to power down entry latency ODT power down exit latency Symbol tAOND tAON tAON tAONPD tAOFD tAOF tAOFPD tANPD tAXPD min. 2 tAC(min) tAC(min) tAC(min) + 2000 2.5 tAC(min) tAC(min) + 2000 3 8 max. 2 tAC(max) + 700 tAC(max) + 1000 2tCK + tAC(max) + 1000 2.5 tAC(max) + 600 2.5tCK + tAC(max) + 1000 3 8 Unit tCK ps ps ps tCK ps ps tCK tCK 2 1 1 Notes
Notes: 1. ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND. 2. ODT turn off time min is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD.
AC Input Test Conditions
Parameter Input reference voltage Input signal maximum peak to peak swing Input signal maximum slew rate Symbol VREF VSWING(max.) SLEW Value 0.5 x VDDQ 1.0 1.0 Unit V V V/ns Notes 1 1 2, 3
Notes: 1. Input waveform timing is referenced to the input signal crossing through the VREF level applied to the device under test. 2. The input signal minimum slew rate is to be maintained over the range from VIL(DC) (max.) to VIH(AC) (min.) for rising edges and the range from VIH(DC) (min.) to VIL(AC) (max.) for falling edges as shown in the below figure. 3. AC timings are referenced with input waveforms switching from VIL(AC) to VIH(AC) on the positive transitions and VIH(AC) to VIL(AC) on the negative transitions.
Start of falling edge input timing
Start of rising edge input timing
VDDQ VIH (AC)(min.) VIH (DC)(min.)
VSWING(max.)
VREF VIL (DC)(max.) VIL (AC)(max.)
TF Falling slew = VIH (DC)(min.) - VIL (AC)(max.) TF
TR
Rising slew =
VSS
VIH (AC) min. - VIL (DC)(max.) TR
AC Input Test Signal Wave forms
Measurement point
DQ RT =25
VTT
Output Load
Preliminary Data Sheet E0938E10 (Ver. 1.0)
18
EBE21UE8ABDA
Pin Functions
CK, /CK (input pin) The CK and the /CK are the master clock inputs. All inputs except DMs, DQSs and DQs are referred to the cross point of the CK rising edge and the VREF level. When a read operation, DQSs and DQs are referred to the cross point of the CK and the /CK. When a write operation, DMs and DQs are referred to the cross point of the DQS and the VREF level. DQSs for write operation are referred to the cross point of the CK and the /CK. /CS (input pin) When /CS is low, commands and data can be input. When /CS is high, all inputs are ignored. However, internal operations (bank active, burst operations, etc.) are held. /RAS, /CAS, and /WE (input pins) These pins define operating commands (read, write, etc.) depending on the combinations of their voltage levels. See "Command operation". A0 to A13 (input pins) Row address (AX0 to AX13) is determined by the A0 to the A13 level at the cross point of the CK rising edge and the VREF level in a bank active command cycle. Column address (AY0 to AY9) is loaded via the A0 to the A9 at the cross point of the CK rising edge and the VREF level in a read or a write command cycle. This column address becomes the starting address of a burst operation. A10 (AP) (input pin) A10 defines the precharge mode when a precharge command, a read command or a write command is issued. If A10 = high when a precharge command is issued, all banks are precharged. If A10 = low when a precharge command is issued, only the bank that is selected by BA1, BA0 is precharged. If A10 = high when read or write command, auto-precharge function is enabled. While A10 = low, auto-precharge function is disabled. BA0, BA1, BA2 (input pin) BA0, BA1 and BA2 are bank select signals (BA). The memory array is divided into 8 banks: bank 0 to bank 7. (See Bank Select Signal Table) [Bank Select Signal Table]
BA0 Bank 0 Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 6 Bank 7 L H L H L H L H BA1 L L H H L L H H BA2 L L L L H H H H
Remark: H: VIH. L: VIL.
Preliminary Data Sheet E0938E10 (Ver. 1.0)
19
EBE21UE8ABDA
CKE (input pin) CKE controls power down and self-refresh. The power down and the self-refresh commands are entered when the CKE is driven low and exited when it resumes to high. The CKE level must be kept for 1 CK cycle at least, that is, if CKE changes at the cross point of the CK rising edge and the VREF level with proper setup time tIS, at the next CK rising edge CKE level must be kept with proper hold time tIH. DQ (input and output pins) Data are input to and output from these pins. DQS and /DQS (input and output pin) DQS and /DQS provide the read data strobes (as output) and the write data strobes (as input). DM (input pins) DM is the reference signal of the data input mask function. DMs are sampled at the cross point of DQS and /DQS. VDD (power supply pins) 1.8V is applied. (VDD is for the internal circuit.) VDDSPD (power supply pin) 1.8V is applied (For serial EEPROM). VSS (power supply pin) Ground is connected.
Detailed Operation Part and Timing Waveforms
Refer to the EDE1104ABSE, EDE1108ABSE, EDE1116ABSE datasheet (E0852E).
Preliminary Data Sheet E0938E10 (Ver. 1.0)
20
EBE21UE8ABDA
Physical Outline
Unit: mm
Front side
2.00 Min 11.55 17.55 (DATUM -A-) 3.80 Max
4x Full R
2.15
11.40
B 67.60
A 47.40 2.45 1.00 0.10
199
1
4.00 Min
Component area (Front)
6.00
D
Back side 63.60 2.45 C
200 2
2.15
4.00
20.00
ECA-TS2-0106-01
Component area (Back)
(DATUM -A-) Detail A 0.60 Detail B FULL R 2.70
2.55 Min
0.51 Max
4.20
4.00 0.10
1.00 0.10
0.45 0.03
Detail C
Detail D Contact pad 4.20
2.40
Preliminary Data Sheet E0938E10 (Ver. 1.0)
21
0.25 Max 0.51 Max
30.00
EBE21UE8ABDA
CAUTION FOR HANDLING MEMORY MODULES
When handling or inserting memory modules, be sure not to touch any components on the modules, such as the memory ICs, chip capacitors and chip resistors. It is necessary to avoid undue mechanical stress on these components to prevent damaging them. In particular, do not push module cover or drop the modules in order to protect from mechanical defects, which would be electrical defects. When re-packing memory modules, be sure the modules are not touching each other. Modules in contact with other modules may cause excessive mechanical stress, which may damage the modules.
MDE0202
NOTES FOR CMOS DEVICES
1 PRECAUTION AGAINST ESD FOR MOS DEVICES
Exposing the MOS devices to a strong electric field can cause destruction of the gate oxide and ultimately degrade the MOS devices operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it, when once it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. MOS devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. MOS devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor MOS devices on it.
2 HANDLING OF UNUSED INPUT PINS FOR CMOS DEVICES
No connection for CMOS devices input pins can be a cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. The unused pins must be handled in accordance with the related specifications.
3 STATUS BEFORE INITIALIZATION OF MOS DEVICES
Power-on does not necessarily define initial status of MOS devices. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the MOS devices with reset function have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. MOS devices are not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for MOS devices having reset function.
CME0107
Preliminary Data Sheet E0938E10 (Ver. 1.0)
22
EBE21UE8ABDA
The information in this document is subject to change without notice. Before using this document, confirm that this is the latest version.
No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Elpida Memory, Inc. Elpida Memory, Inc. does not assume any liability for infringement of any intellectual property rights (including but not limited to patents, copyrights, and circuit layout licenses) of Elpida Memory, Inc. or third parties by or arising from the use of the products or information listed in this document. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of Elpida Memory, Inc. or others. Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of the customer's equipment shall be done under the full responsibility of the customer. Elpida Memory, Inc. assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information. [Product applications] Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability. However, users are instructed to contact Elpida Memory's sales office before using the product in aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment, medical equipment for life support, or other such application in which especially high quality and reliability is demanded or where its failure or malfunction may directly threaten human life or cause risk of bodily injury. [Product usage] Design your application so that the product is used within the ranges and conditions guaranteed by Elpida Memory, Inc., including the maximum ratings, operating supply voltage range, heat radiation characteristics, installation conditions and other related characteristics. Elpida Memory, Inc. bears no responsibility for failure or damage when the product is used beyond the guaranteed ranges and conditions. Even within the guaranteed ranges and conditions, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Elpida Memory, Inc. products does not cause bodily injury, fire or other consequential damage due to the operation of the Elpida Memory, Inc. product. [Usage environment] This product is not designed to be resistant to electromagnetic waves or radiation. This product must be used in a non-condensing environment. If you export the products or technology described in this document that are controlled by the Foreign Exchange and Foreign Trade Law of Japan, you must follow the necessary procedures in accordance with the relevant laws and regulations of Japan. Also, if you export products/technology controlled by U.S. export control regulations, or another country's export control laws or regulations, you must follow the necessary procedures in accordance with such laws or regulations. If these products/technology are sold, leased, or transferred to a third party, or a third party is granted license to use these products, that third party must be made aware that they are responsible for compliance with the relevant laws and regulations.
M01E0107
Preliminary Data Sheet E0938E10 (Ver. 1.0)
23


▲Up To Search▲   

 
Price & Availability of EBE21UE8ABDA-5C-E

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X